Constructing Combinatorial 4-manifolds

ثبت نشده
چکیده

Every closed oriented PL 4-manifold is a branched cover of the 4-sphere branched over a PL-surface with finitely many singularities by Piergallini [Topology 34(3):497-508, 1995]. This generalizes a long standing result by Hilden and Montesinos to dimension four. Izmestiev and Joswig [Adv. Geom. 3(2):191-225, 2003] gave a combinatorial equivalent of the Hilden and Montesinos result, constructing closed oriented combinatorial 3-manifolds as simplicial branched covers of combinatorial 3-spheres. The construction of Izmestiev and Joswig is generalized and applied to the result of Piergallini, obtaining closed oriented combinatorial 4-manifolds as simplicial branched covers of simplicial 4-spheres.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feynman Diagrams of Generalized Matrix Models and the Associated Manifolds in Dimension 4

The problem of constructing a quantum theory of gravity has been tackled with very different strategies, most of which relying on the interplay between ideas from physics and from advanced mathematics. On the mathematical side, a central rôle is played by combinatorial topology, often used to recover the space-time manifold from the other structures involved. An extremely attractive possibility...

متن کامل

Some examples of aspherical 4-manifolds that are homology 4-spheres

In this paper, Problem 4.17 on R. Kirby’s problem list is solved by constructing infinitely many aspherical 4-manifolds that are homology 4-

متن کامل

Problems around 3–manifolds

This is a personal view of some problems on minimal surfaces, Ricci flow, polyhedral geometric structures, Haken 4–manifolds, contact structures and Heegaard splittings, singular incompressible surfaces after the Hamilton–Perelman revolution. We give sets of problems based on the following themes; Minimal surfaces and hyperbolic geometry of 3–manifolds. In particular, how do minimal surfaces gi...

متن کامل

A calculus for shadows of smooth 4-manifolds

We provide a combinatorial presentation of a relevant class of smooth 4-dimensional manifolds based on V.G. Turaev’s theory of shadows. We prove a calculus which could be viewed as a 4-dimensional analog of the results of S. Matveev and R. Piergallini on spines of 3-manifolds. In the last section of the paper we refine our results to the case of standard shadows in analogy with the case of stan...

متن کامل

Stein Domains and Branched Shadows of 4-manifolds

We provide sufficient conditions assuring that a suitably decorated 2-polyhedron can be thickened to a compact 4-dimensional Stein domain. We also study a class of flat polyhedra in 4-manifolds and find conditions assuring that they admit Stein, compact neighborhoods. We base our calculations on Turaev’s shadows suitably “smoothed”; the conditions we find are purely algebraic and combinatorial.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007